机器人越来越多地部署在与人类共享的空间中,包括家庭环境和工业环境。在这些环境中,人与机器人之间的相互作用(HRI)对于安全性,可读性和效率至关重要。 HRI的一个关键因素是信任,它调节了系统的接受。已显示拟人化可以调节机器人的信任发展,但工业环境中的机器人通常不是拟人化的。我们在工业环境中设计了一个简单的互动,在该环境中,拟人化模拟驱动器(ARMOD)机器人模拟了自动驾驶汽车(AGV)。该任务由与AGV的人类交叉路径组成,有或不带有狭窄的走廊上安装在顶部。人类和系统在越过路径时需要协商轨迹,这意味着人必须关注机器人的轨迹,以避免与它发生碰撞。在存在ARMOD的情况下,报告的信任评分有显着的增长,表明拟人化机器人的存在足以调节信任,即使在有限的相互作用中,就像我们在这里提出的相互作用一样。
translated by 谷歌翻译
在不失去先前学习的情况下学习新任务和技能(即灾难性遗忘)是人为和生物神经网络的计算挑战,但是人工系统努力与其生物学类似物达成平等。哺乳动物的大脑采用众多神经手术来支持睡眠期间的持续学习。这些是人工适应的成熟。在这里,我们研究了建模哺乳动物睡眠的三个不同组成部分如何影响人工神经网络中的持续学习:(1)在非比型眼运动(NREM)睡眠期间观察到的垂直记忆重播过程; (2)链接到REM睡眠的生成记忆重播过程; (3)已提出的突触降压过程,以调整信噪比和支持神经保养。在评估持续学习CIFAR-100图像分类基准上的性能时,我们发现将所有三个睡眠组件的包含在内。在以后的任务期间,训练和灾难性遗忘在训练过程中提高了最高准确性。尽管某些灾难性遗忘在网络培训过程中持续存在,但更高水平的突触缩减水平会导致更好地保留早期任务,并进一步促进随后培训期间早期任务准确性的恢复。一个关键的要点是,在考虑使用突触缩小范围的水平时,手头有一个权衡 - 更具侵略性的缩减更好地保护早期任务,但较少的缩减可以增强学习新任务的能力。中级水平可以在训练过程中与最高的总体精度达到平衡。总体而言,我们的结果都提供了有关如何适应睡眠组件以增强人工连续学习系统的洞察力,并突出了未来神经科学睡眠研究的领域,以进一步进一步进行此类系统。
translated by 谷歌翻译
“技术彩票”描述了一种研究思想或技术,因为它适合可用的软件和硬件,而不一定是因为它优于替代方向 - 审查是从深度学习和GPU的协同作用到GPU的协同效应,城市设计和自动驾驶汽车的断开连接。自动驾驶实验室(SDL)的新生领域,尤其是作为材料加速平台(地图)实施的新生领域,有类似陷阱的风险:构建地图的下一个逻辑步骤是采用现有的实验室设备和工作流并混合一些AI和自动化。在此白皮书中,我们认为,作为地图研究计划的一部分,将加速搜索新材料的相同模拟和AI工具也使得设计了根本新的计算媒体的设计。我们不必受到科学,机电一体化和通用计算的现有偏见的限制,而是我们可以通过网络物理学习和闭环,自我优化系统来追求工程物理学的新向量。在这里,我们概述了一个基于仿真的地图程序来设计使用物理本身来解决优化问题的计算机。这样的系统减轻了其他每类地图中存在的硬件软件 - 材料用户信息损失,并且它们在计算问题和计算介质之间完全对齐消除了任何技术彩票。我们提供了迈向早期“物理计算(PC)-MAP”进步的具体步骤,以及我们希望在材料研究人员和计算机科学家之间引入创新合作的新时代。
translated by 谷歌翻译
原始的“七个图案”阐述了科学计算领域的基本方法的路线图,其中图案是一种捕获计算和数据移动模式的算法方法。我们介绍了“仿真智力的九个主题”,是一种开发和整合的路线图,以合并科学计算,科学模拟和人工智能所必需的基本算法。我们称之为合并模拟智能(SI),短暂。我们认为模拟智能的主题是相互连接的和相互依存的,很像操作系统层中的组件一样。使用这种隐喻,我们探讨了模拟智能操作系统堆栈(Si-Stack)和其中图案的各层的性质:(1)多种物理和多尺度建模; (2)替代建模和仿真; (3)基于仿真的推理; (4)因果建模和推理; (5)基于代理的建模; (6)概率编程; (7)可微分的编程; (8)开放式优化; (9)机器编程。我们相信图案之间的协调努力提供了加速科学发现的巨大机会,从综合生物和气候科学中解决逆问题,指导核能实验,并预测社会经济环境中的紧急行为。我们详细说明了Si-stack的每层,详细说明了最先进的方法,提出了示例以突出挑战和机遇,并倡导具体的方法来推进主题和与其组合的协同作用。推进和整合这些技术可以实现稳健且有效的假设仿真 - 分析类型的科学方法,我们用几种使用案例为人机组合和自动化学介绍。
translated by 谷歌翻译
In the past years, deep learning has seen an increase of usage in the domain of histopathological applications. However, while these approaches have shown great potential, in high-risk environments deep learning models need to be able to judge their own uncertainty and be able to reject inputs when there is a significant chance of misclassification. In this work, we conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole-Slide-Images under domain shift using the H\&E stained Camelyon17 breast cancer dataset. Although it is known that histopathological data can be subject to strong domain shift and label noise, to our knowledge this is the first work that compares the most common methods for uncertainty estimation under these aspects. In our experiments, we compare Stochastic Variational Inference, Monte-Carlo Dropout, Deep Ensembles, Test-Time Data Augmentation as well as combinations thereof. We observe that ensembles of methods generally lead to higher accuracies and better calibration and that Test-Time Data Augmentation can be a promising alternative when choosing an appropriate set of augmentations. Across methods, a rejection of the most uncertain tiles leads to a significant increase in classification accuracy on both in-distribution as well as out-of-distribution data. Furthermore, we conduct experiments comparing these methods under varying conditions of label noise. We observe that the border regions of the Camelyon17 dataset are subject to label noise and evaluate the robustness of the included methods against different noise levels. Lastly, we publish our code framework to facilitate further research on uncertainty estimation on histopathological data.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents within either one domain-specific corpus or multi-domain corpora. It uses advanced Natural Language Processing (NLP) techniques to generate numerical representations of documents. Currently it leverages a large pre-trained language model to generate these document representations. The system focuses on scientific publications and patent documents and contains more than 200 million documents. It is easily accessible via a simple Application Programming Interface (API) or via a web interface. Moreover, it is continuously being updated and can be extended to text corpora from other domains. We see this system as a general-purpose tool for future research applications in the social sciences and other domains.
translated by 谷歌翻译
Charisma is considered as one's ability to attract and potentially also influence others. Clearly, there can be considerable interest from an artificial intelligence's (AI) perspective to provide it with such skill. Beyond, a plethora of use cases opens up for computational measurement of human charisma, such as for tutoring humans in the acquisition of charisma, mediating human-to-human conversation, or identifying charismatic individuals in big social data. A number of models exist that base charisma on various dimensions, often following the idea that charisma is given if someone could and would help others. Examples include influence (could help) and affability (would help) in scientific studies or power (could help), presence, and warmth (both would help) as a popular concept. Modelling high levels in these dimensions for humanoid robots or virtual agents, seems accomplishable. Beyond, also automatic measurement appears quite feasible with the recent advances in the related fields of Affective Computing and Social Signal Processing. Here, we, thereforem present a blueprint for building machines that can appear charismatic, but also analyse the charisma of others. To this end, we first provide the psychological perspective including different models of charisma and behavioural cues of it. We then switch to conversational charisma in spoken language as an exemplary modality that is essential for human-human and human-computer conversations. The computational perspective then deals with the recognition and generation of charismatic behaviour by AI. This includes an overview of the state of play in the field and the aforementioned blueprint. We then name exemplary use cases of computational charismatic skills before switching to ethical aspects and concluding this overview and perspective on building charisma-enabled AI.
translated by 谷歌翻译
Deep learning-based 3D human pose estimation performs best when trained on large amounts of labeled data, making combined learning from many datasets an important research direction. One obstacle to this endeavor are the different skeleton formats provided by different datasets, i.e., they do not label the same set of anatomical landmarks. There is little prior research on how to best supervise one model with such discrepant labels. We show that simply using separate output heads for different skeletons results in inconsistent depth estimates and insufficient information sharing across skeletons. As a remedy, we propose a novel affine-combining autoencoder (ACAE) method to perform dimensionality reduction on the number of landmarks. The discovered latent 3D points capture the redundancy among skeletons, enabling enhanced information sharing when used for consistency regularization. Our approach scales to an extreme multi-dataset regime, where we use 28 3D human pose datasets to supervise one model, which outperforms prior work on a range of benchmarks, including the challenging 3D Poses in the Wild (3DPW) dataset. Our code and models are available for research purposes.
translated by 谷歌翻译
This article concerns Bayesian inference using deep linear networks with output dimension one. In the interpolating (zero noise) regime we show that with Gaussian weight priors and MSE negative log-likelihood loss both the predictive posterior and the Bayesian model evidence can be written in closed form in terms of a class of meromorphic special functions called Meijer-G functions. These results are non-asymptotic and hold for any training dataset, network depth, and hidden layer widths, giving exact solutions to Bayesian interpolation using a deep Gaussian process with a Euclidean covariance at each layer. Through novel asymptotic expansions of Meijer-G functions, a rich new picture of the role of depth emerges. Specifically, we find that the posteriors in deep linear networks with data-independent priors are the same as in shallow networks with evidence maximizing data-dependent priors. In this sense, deep linear networks make provably optimal predictions. We also prove that, starting from data-agnostic priors, Bayesian model evidence in wide networks is only maximized at infinite depth. This gives a principled reason to prefer deeper networks (at least in the linear case). Finally, our results show that with data-agnostic priors a novel notion of effective depth given by \[\#\text{hidden layers}\times\frac{\#\text{training data}}{\text{network width}}\] determines the Bayesian posterior in wide linear networks, giving rigorous new scaling laws for generalization error.
translated by 谷歌翻译